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1.1 An undirected graph G = (N,A) is said to
be bipartite if it is possible to partition the nodes
into sets L,R such that each arc (i, j) has one
endpoint in L and one endpoint in R.

Prove the following statement:

Theorem 1. An undirected graph G is bipartite
if and only if every closed walk in G has an even
number of arcs.

→ If an undirected graph G = (N,A) is bipartite,
then every closed walk in G has an even number
of arcs.

Proof. Let us assume that there exists some
closed walk, w, in G such that w has an odd
number of arcs.

We know that by definition w is a sequence
of nodes, ni, in N and arcs, ai, in A,

n1, a1, n2, a2, . . . , n2k+1, a2k+1, n2k+2

in which the endpoints of arc ai are the surround-
ing nodes ni and ni+1. In order for the walk to
be a closed walk, we know that the starting node
must also be the ending node, i.e. n1 = n2k+2.

Since we assumed that the number of arcs in
closed walk w is odd, the index 2k + 1 is used to
denote the general form of an odd integer where
k ∈ N. This implies that the terminal node with
index 2k + 2 = 2(k + 1) is even by definition.

By the definition of bipartite, we know that
if one endpointof arc ai, node ni, is in set L, then
the corresponding endpoint of ai, node ni+1,
must be in set R.

Let us assume without loss of generality that
n1 ∈ L. This implies that the corresponding
endpoint of arc a1, node n2 ∈ R.

By the definition of a walk, this endpoint,
n2, is also an endpoint of the succeeding arc a2.
However, since n2 is in R and G is bipartite, the
remaining endpoint of a2, node n3, must be in
set L. Continuing on in this fashion, we deduce
that all nodes with an even index must be in the
set R and all nodes with an odd index must be
in set L.

We have previously noted that if there are an
odd number of arcs in walk w, then the terminal
node n2k+2 must have an even index. Therefore,
we know that node n2k+2 ∈ R.

However, as stated earlier, in order for the
walk to be closed, n1 = n2k+2 which implies that
n2k+2 ∈ L, which is a direct contradiction.

Thus, if G is an undirected and bipartite
graph, then every closed walk in G must have
an even number of arcs.

← If every closed walk on the undirected graph
G = (N,A) has an even number of arcs, then G
is bipartite.

Proof. We may begin by assuming the graph G
is connected (in cases in which G is not con-
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nected, we may consider each connected compo-
nent seperately and proceed accordingly).

Let us examine the implications if G has ei-
ther one node or no nodes at all. In either case,
G is trivially bipartite and thus require no fur-
ther consideration.

Therefore, let us assume without loss of gen-
erality that G is a connected graph with at least
two nodes.

Let us choose a random node n0 of G. Since
G is connected, we know that there is a path
from n0 to every other node of G.

We will partition the remaining nodes into
two sets, E and O. Let E contain all nodes which
have a path of even length originating from n0.
Similarily, O will contain all nodes which have a
path of odd length originating from n0.

We know that E ∪ O = G since G is con-
nected. Furthermore, we can see that the inter-
section of the two sets is empty.

Let us assume for the sake of contradic-
tion that there exists some node ni such that
ni ∈ E ∩ O. This implies that there exists both
paths even length and odd length from our ran-
dom node n0 to node ni.

This implies that the length of the resulting
closed walk is odd as it axiomatic that an even
number plus and an odd number is an odd num-
ber. This result is a direct contradiction to the
fact that every closed walk in G has a even num-
ber of arcs. Therefore, we know that the inter-
section of E and O must be empty and the sets
partition the nodes of graph G.

Now let us assume that there exists an arc, ai,
in A such that both nodes, nj and nk are in set
E. Then there exists an even length path from
nj to nk and an even length path from nk to nj .
Again, it is trivial to show that two even lengths
plus a length of one results in an odd length.
Therefore, these paths form a closed walk of odd
length with arc ai. This is a contradiction to our
premise and thus ai cannot connect two nodes in
set E.

We may similarily show that there cannot ex-
ist an arc connecting two nodes in set O as it

would once again result in a closed walk of odd
length.

Since G is a connected graph and we have
demonstrated that no arcs may connect two
nodes in the same set, we may conclude that
E and O partition the nodes into two sets such
that each arc (i, j) has an endpoint in E and an
endpoint in O and the graph is bipartite.

1.2 Use induction to show that postage of six
cents or more can be achieved by using only 2
cents and 7 cent stamps.

Proof. We want to prove that the following
proposition is true for all n ≥ 6:

P (n): Any denomination of postage can be
achieved using only 2 cent and 7 cent stamps.

Basis Steps: P (6) : 6 = 2 ∗ 3 + 7 ∗ 0 = 6
P (7) : 7 = 2 ∗ 0 + 7 ∗ 1 = 7
P (8) : 8 = 2 ∗ 4 + 7 ∗ 0 = 8
P (9) : 9 = 2 ∗ 1 + 7 ∗ 1 = 9
P (10) : 10 = 2 ∗ 5 + 7 ∗ 0 = 10

Upon completion of these base cases, it be-
come evident that there are two seperate algo-
rithims at work. Therefore we will formulate
two seperate cases. Together, these propositions
will consider all cases of the original proposition,
however we will prove them seperately.

Case 1: P (n)even : k = 2 ∗
(
k

2

)
+ 7 ∗ 0

Case 2: P (n)odd : k = 2 ∗
(
k − 7

2

)
+ 7 ∗ 1

Inductive Hypothesis:
We will assume that P (k) is true for all 6 ≤ k,
where k ∈ Z.

Inductive Step:
We must prove that P (k + 1) is true.
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Case 1, k + 1 is even:

P (k + 1) : k + 1 = 2 ∗
(

(k + 1)

2

)
+ 7 ∗ 0

= 2 ∗
(
k

2
+

1

2

)
+ 7 ∗ 0

= 2 ∗
(
k

2

)
+ 7 ∗ 0 + 1

= P (k)even + 1

= k + 1

Case 2, k + 1 is odd:

P (k + 1) : k + 1 = 2 ∗
(

(k + 1)− 7

2

)
+ 7 ∗ 1

= 2 ∗
(

(k − 7) + 1)

2

)
+ 7 ∗ 1

= 2 ∗
(
k − 7

2

)
+ 7 ∗ 1 + 1

= P (k)odd + 1

= k + 1

Therefore, we have proven our each case of
our original proposition and thus proved that
any denomination of postage can be achieved us-
ing only 2 and 7 cent stamps.

1.3 Can you find what is wrong with the follow-
ing inductive argument:

Theorem 2. All people have the same height.

Proof: We use induction on the number of peo-
ple. Base Case: 1 Person. Clearly if there is

only one person, then all people have the same
height. Inductive step: The inductive hypoth-
esis is that for any group of n people, all have
the same height. We show that his implies that
for any group of n + 1 people, all have the same
height. Well, given any group of n + 1 people,
if we exclude the last person, we get a group of
n people. By the inductive hypothesis, these n
people all have the same height. We could also
exclude the first person, and we would again get
a group of n people, so also the last n people have
the same height. Therefore, all n+1 people have
the same height.

Counter: We see that a misstep is made when
we assume that the group of people being con-
sidered is larger than 2. Given that n = 2, we
encounter a significant problem when we exclude
the last person.

Let A represent the set that is obtained after
excluding the ’last person’. If n = 2, then the
set A consists entirely of our initial person.

Similarily, let set B represent the set that is
obtained by excluding the ’first person’. If n = 2,
then set B consists entirely of our last person.

Our base case tells us that in sets containing
only one person the proposition is satisfied and
all people have the same height.

However, we know that A ∩ B = ∅ since the
two sets do not contain any common elements as
people are distinct.

Therefore, we cannot assume that the induc-
tion hypothesis holds true for n = 2. Thus we
cannot prove the hypothesis true for any cases
larger than 2 and the proof is invalidated.


