
LINEAR PROGRAMMING

Homework 9

Fall 2014 Csci 628 Megan Rose Bryant

1. Consider a cutting-stock problem with raw width 100 inch and order summary calling for

• 600 finals of width 52 inches

• 600 finals of width 29 inches

• 600 finals of width 27 inches

• 1200 finals of width 21 inches

(a) List all patterns that are maximal, i.e., the part of the raw that is discarded is too small
to cut any final.

Pattern # 1 2 3 4 5 6 7 8 9 10 11 12

a1j 1 1 0 0 0 0 0 0 0 0 0 0
a2j 1 0 0 3 2 2 1 1 0 0 0 0
a3j 0 1 0 0 1 0 2 0 3 2 1 0
a4j 0 1 2 0 0 2 0 3 0 2 3 4

Total 81 100 94 87 85 100 83 92 81 96 90 84

(b) Show that the optimal solution uses 900 raws. We see from the AMPL output below
that the optimal solution uses 900 raws and 2 cutting patterns. The AMPL files are
available for review in Appendix A.
AMPL Output:

ampl: reset; include cut.run;

Gurobi 5.6.3: optimal solution; objective 0.5833333333

Gurobi 5.6.3: optimal solution; objective 950

Gurobi 5.6.3: optimal solution; objective 0.1666666667

1 simplex iterations

Gurobi 5.6.3: optimal solution; objective 950

1 simplex iterations

Gurobi 5.6.3: optimal solution; objective 0.1666666667

1 simplex iterations

Gurobi 5.6.3: optimal solution; objective 900

1 simplex iterations

Gurobi 5.6.3: optimal solution; objective 0



nbr [*,*] (tr)

: 1 2 3 4 :=

1 1 0 0 0

2 0 3 0 0

3 0 0 3 0

4 0 0 0 4

5 1 0 1 1

6 0 0 2 2

7 0 2 0 2

;

Cut [*] :=

1 0

2 0

3 0

4 0

5 600

6 0

7 300

;

(c) First-fit-decreasing means that we always cut the largest final for which we still have
orders left, and which fits into the remaining material of the raw. Show that the solution
found by first-fit-decreasing uses 1100 raws.

This methodology would lead us to satisfy the largest length finals first. Therefore, we
would begin by making cuts according to pattern 1 600 times. This would result in 600
finals of length 52 and 600 finals of length 29 thereby satisfing the two largest lengths.
The next largest length final is length 27. In order to satisfy demand for this final, we
must make 600

3 = 200 cuts following pattern 9. Finally, we must satisfy the demand for
the remaining finals of length 21. These are best satisfied using pattern 12. Therefore,
we will make 1200/4 = 300 cuts following pattern 12. This results in 1200 cuts of length
21.

Therefore, we see that using the first-fit-decreasing method we require 600+200+300 =
1100 total cuts. This is a large increase over the optimal number of cuts, which was
found to be 900 in part (b).

2. Suppose the raw width is 181 inch, and the order summary is calling for

• 90 finals of width 215
8 inches

• 51 finals of width 201
2 inches

• 45 finals of width 20 inches

• 11 finals of width 171
4 inches

(a) Find an initial set of patterns (as we did in class when we started the revised simplex
method), where the i-th pattern cuts only finals of type i.



Here we have an initial set of patterns (starting basis) where the ith pattern cuts only
final type i.

B =


8 0 0 0
0 8 0 0
0 0 9 0
0 0 0 10


(b) (Optional: you do not need to hand this in) Execute one full iteration of the revised

simplex method, starting with the columns you generated in (a).

(c) Create a data file for this instance, and use the AMPL files provided on blackboard
to solve the LP relaxation. Report the optimal value of the LP relaxation, and report
the optimal solution (i.e., the patterns used, and the (fractional) number of raws cut
according to each pattern.)
The optimal objective value is 23 raws cut according to the following patterns:

• 10×Pattern 1: 8 cuts of final 1.

• 6.0×Pattern 2: 7 cuts of final 2, 1 cut of final 3, and 1 cut of final 4.

• 4.5×Pattern 3: 2 cuts of final 2, 7 cuts of final 3.

• 2.5×Pattern 4: 4 cuts of final 1, 3 cuts of final 3, and 2 cuts of final 4. The AMPL
output as well as the data, model, and run files used to obtain the above solution is
available in Appendix B.

(d) Use part (c) to give the optimal (integer) solution to this cutting stock problem. Explain
how you know that this is indeed the optimal solution.

In order to derive the optimal integer solution to this cutting stock problem we must
consider first the implications of the fractional solution. Currently, we have an optimal
solution of x∗T =

[
10 0 0 0 6 0 0 4.5 2.5

]
.

In order to achieve an integer solution while ensuring that we satisfy production, we
must round up our non-integer solution. This will give us the following integer solution:
x∗T =

[
10 0 0 0 6 0 0 5 3

]
.

This integer solution will result in a surplus of the finals used in the effected patterns
(patterns 8 and 9) and an increase in the total number of raws needed from 23 to 24.

We know that this is the optimal integer solution since the number of raws needed for
the integer solution is the next integer (24) after the number of raws needed for the
non-integer solution. Therefore, there are no integer solutions that can decrease the
number of raws needed while meeting production demand and we know that this integer
solution is an optimal integer solution.

(e) Suppose now that the machine that cuts the raws has only eight knives, and, consequently,

a cutting pattern specified by a1, . . . , am is admissible, only if
m∑
i=1

ai does not exceed eight.

Explain how does this changes your answer to part (a). You do not have to redo part
(b), but explain how Step 2 (finding k such that ck > 0) should be changed to make sure
we generate a column (pattern) that does not cut more than eight finals.

This would have a significant impact on our starting basis found in part (a). This is
because patterns 3 and 4 of that basis have more than 8 cuts, which is prohibited with



the new, 8-knife machine. This new restriction would therefore invalidate the given
starting basis and exclude those two patterns from the feasible region.

“Step 2” is where we choose an entering index k ∈ N such that ck > 0. Given that we
found y in step 1 such that AT

By = cb, we must select k such that ck > yTAk in addition
to our new requirement that the sum of the coeffients is less than 8 (the maximum
number of knife cuts). We will do this be ensuring that the patterns do not include
more than 8 cuts. This is further achieved by capping all patterns at 8 cuts. The ratio
test will therefore be effected and we will have to select the k by choosing the minumum
ratio with this new constraint.

(f) Modify the AMPL file and solve this new problem. Feel free to come for help there is a
lot of new syntax in this AMPL file, and there is no need to spend a lot of time figuring
it out.

The modified AMPL program is available for review in Appendix C.

(g) Report the optimal value of the LP relaxation for the modified problem. The optimal
solution for the relaxed LP is x∗T =

[
11.25 6.375 5.625 0 1.1

]
. This gives us an

optimal Raw usage of 24.35. The complete AMPL output is available in Appendix C.

(h) Use the previous part to give an integer solution to the problem. Explain what you know
about the quality of the solution (is it guaranteed to be optimal? If not, how far off can
it be?)

In order to derive an integer solution from the noninteger optimal solution, we must
round all noninteger values up.
This makes the derived integer solution:x∗T =

[
12 7 6 0 2

]
. This integer solution

gives us a objective value of 27. We cannot guarantee that this integer objective value
is optimal since the value is more than one integer greater than the noninteger objective
value. We can say that it is at most off by two since the lowest integer value above the
noninteger optimal objective is 25.



Appendix A

AMPL Data File, Problem 1:

param roll_width := 100 ;

param m := 4;

param : width orders :=

1 52 600

2 29 600

3 27 600

4 21 1200;

AMPL Model File, Problem 1:

# ----------------------------------------

# CUTTING STOCK USING PATTERNS

# ----------------------------------------

param roll_width > 0; # width of raw rolls

param m; # number of final types

set FINALTYPES = 1..m;

param width {FINALTYPES}; # widths of each final type

param orders {FINALTYPES}; # number of orders for each final type

param nPAT integer >= 0; # number of patterns

set PATTERNS := 1..nPAT; # set of patterns

param nbr {FINALTYPES,PATTERNS} integer >= 0; #nbr(i,j)= number of times final type i appears in pattern j

check {j in PATTERNS}:

sum {i in FINALTYPES} width[i] * nbr[i,j] <= roll_width;

# Note that nbr is a parameter, not a variable,

# and Check_Fit is not a constraint, but a check before solving

var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern

minimize Number_Cut : # minimize total raw rolls cut

sum {j in PATTERNS} Cut[j];

subj to Fill_Orders {i in FINALTYPES}: #fill the orders for each final type

sum {j in PATTERNS} nbr[i,j] * Cut[j] = orders[i];

# ----------------------------------------

# KNAPSACK SUBPROBLEM FOR CUTTING STOCK

# ----------------------------------------

param price {FINALTYPES} default 0.0;

var Use {FINALTYPES} integer >= 0;

maximize Reduced_Cost:

sum {i in FINALTYPES} price[i] * Use[i] - 1;

subj to Width_Limit:

sum {i in FINALTYPES} width[i] * Use[i] <= roll_width;

AMPL Run File, Problem 1:

# ----------------------------------------

# GILMORE-GOMORY METHOD FOR



# CUTTING STOCK PROBLEM

# ----------------------------------------

option solver gurobi;

model cut.mod;

data cut.dat;

problem Cutting_Opt: Cut, Number_Cut, Fill_Orders;

option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;

option relax_integrality 0;

let nPAT := 0;

for {i in FINALTYPES} {

let nPAT := nPAT + 1;

let nbr[i,nPAT] := floor (roll_width/width[i]);

let {i2 in FINALTYPES: i2 <> i} nbr[i2,nPAT] := 0;

};

repeat {

solve Cutting_Opt;

let {i in FINALTYPES} price[i] := Fill_Orders[i].dual;

solve Pattern_Gen;

if Reduced_Cost > 0.00001 then {

let nPAT := nPAT + 1;

let {i in FINALTYPES} nbr[i,nPAT] := Use[i];

}

else break;

};

display nbr;

display Cut;

Appendix B

AMPL Output, Problem 2, Part C:

Gurobi 5.6.3: optimal solution; objective 0.08611111111

4 simplex iterations

Gurobi 5.6.3: optimal solution; objective 23.09761905

Gurobi 5.6.3: optimal solution; objective 0.0376984127

29 simplex iterations

48 branch-and-cut nodes

Gurobi 5.6.3: optimal solution; objective 23.07979798

2 simplex iterations

Gurobi 5.6.3: optimal solution; objective 0.02398989899

11 simplex iterations

10 branch-and-cut nodes

Gurobi 5.6.3: optimal solution; objective 23.04861111

2 simplex iterations

Gurobi 5.6.3: optimal solution; objective 0.006944444444

25 simplex iterations



25 branch-and-cut nodes

Gurobi 5.6.3: optimal solution; objective 23.00932836

3 simplex iterations

Gurobi 5.6.3: optimal solution; objective 0.003731343284

32 simplex iterations

36 branch-and-cut nodes

Gurobi 5.6.3: optimal solution; objective 23

4 simplex iterations

Gurobi 5.6.3: optimal solution; objective 0

1 simplex iterations

nbr [*,*] (tr)

: 1 2 3 4 :=

1 8 0 0 0

2 0 8 0 0

3 0 0 9 0

4 0 0 0 10

5 0 7 1 1

6 1 1 0 8

7 5 1 0 3

8 0 2 7 0

9 4 0 3 2

;

Cut [*] :=

1 10

2 0

3 0

4 0

5 6

6 0

7 0

8 4.5

9 2.5

;

AMPL Data File, Problem 2, Part c:

param roll_width := 181 ;

param m := 4;

param : width orders :=

1 21.625 90

2 20.5 51

3 20 45

4 17.25 11;

AMPL Model File, Problem 2, Part C:



# ----------------------------------------

# CUTTING STOCK USING PATTERNS

# ----------------------------------------

param roll_width > 0; # width of raw rolls

param m; # number of final types

set FINALTYPES = 1..m;

param width {FINALTYPES}; # widths of each final type

param orders {FINALTYPES}; # number of orders for each final type

param nPAT integer >= 0; # number of patterns

set PATTERNS := 1..nPAT; # set of patterns

param nbr {FINALTYPES,PATTERNS} integer >= 0; #nbr(i,j)= number of times final type i appears in pattern j

check {j in PATTERNS}:

sum {i in FINALTYPES} width[i] * nbr[i,j] <= roll_width;

# Note that nbr is a parameter, not a variable,

# and Check_Fit is not a constraint, but a check before solving

var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern

minimize Number_Cut : # minimize total raw rolls cut

sum {j in PATTERNS} Cut[j];

subj to Fill_Orders {i in FINALTYPES}: #fill the orders for each final type

sum {j in PATTERNS} nbr[i,j] * Cut[j] = orders[i];

# ----------------------------------------

# KNAPSACK SUBPROBLEM FOR CUTTING STOCK

# ----------------------------------------

param price {FINALTYPES} default 0.0;

var Use {FINALTYPES} integer >= 0;

maximize Reduced_Cost:

sum {i in FINALTYPES} price[i] * Use[i] - 1;

subj to Width_Limit:

sum {i in FINALTYPES} width[i] * Use[i] <= roll_width;

AMPL Run File, Problem 2, Part C:

# ----------------------------------------

# GILMORE-GOMORY METHOD FOR

# CUTTING STOCK PROBLEM

# ----------------------------------------

option solver gurobi;

model cut.mod;

data cut.dat;

problem Cutting_Opt: Cut, Number_Cut, Fill_Orders;

option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;

option relax_integrality 0;

let nPAT := 0;

for {i in FINALTYPES} {

let nPAT := nPAT + 1;

let nbr[i,nPAT] := floor (roll_width/width[i]);



let {i2 in FINALTYPES: i2 <> i} nbr[i2,nPAT] := 0;

};

repeat {

solve Cutting_Opt;

let {i in FINALTYPES} price[i] := Fill_Orders[i].dual;

solve Pattern_Gen;

if Reduced_Cost > 0.00001 then {

let nPAT := nPAT + 1;

let {i in FINALTYPES} nbr[i,nPAT] := Use[i];

}

else break;

};

display nbr;

display Cut;

Appendix C

AMPL Data File:

param roll_width := 181 ;

param m := 4;

param : width orders :=

1 21.625 90

2 20.5 51

3 20 45

4 17.25 11;

AMPL Model File:

# ----------------------------------------

# CUTTING STOCK USING PATTERNS

# ----------------------------------------

param roll_width > 0; # width of raw rolls

param m; # number of final types

set FINALTYPES = 1..m;

param width {FINALTYPES}; # widths of each final type

param orders {FINALTYPES}; # number of orders for each final type

param nPAT integer >= 0; # number of patterns

set PATTERNS := 1..nPAT; # set of patterns

param nbr {FINALTYPES,PATTERNS} integer >= 0; #nbr(i,j)= number of times final type i appears in pattern j

check {j in PATTERNS}:

sum {i in FINALTYPES} width[i] * nbr[i,j] <= roll_width;

# Note that nbr is a parameter, not a variable,

# and Check_Fit is not a constraint, but a check before solving

var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern

minimize Number_Cut : # minimize total raw rolls cut

sum {j in PATTERNS} Cut[j];

subj to Fill_Orders {i in FINALTYPES}: #fill the orders for each final type



sum {j in PATTERNS} nbr[i,j] * Cut[j] = orders[i] ;

# ----------------------------------------

# KNAPSACK SUBPROBLEM FOR CUTTING STOCK

# ----------------------------------------

param price {FINALTYPES} default 0.0;

var Use {FINALTYPES} integer >= 0;

maximize Reduced_Cost:

sum {i in FINALTYPES} price[i] * Use[i] - 1;

subj to Width_Limit:

sum {i in FINALTYPES} width[i] * Use[i] <= roll_width;

subj to Max_Cuts {j in PATTERNS}:

sum{i in FINALTYPES} nbr[i,j] <= 8;

AMPL Run File:

# ----------------------------------------

# GILMORE-GOMORY METHOD FOR

# CUTTING STOCK PROBLEM

# ----------------------------------------

option solver gurobi;

model cut.mod;

data cut.dat;

problem Cutting_Opt: Cut, Number_Cut, Fill_Orders;

option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit,Max_Cuts;

option relax_integrality 0;

let nPAT := 0;

for {i in FINALTYPES} {

let nPAT := nPAT + 1;

let nbr[i,nPAT] := floor (roll_width/width[i]);

if nbr[i,nPAT]>= 8 then {

let nbr[i,nPAT] := 8;};

let {i2 in FINALTYPES: i2 <> i} nbr[i2,nPAT] := 0;

};

repeat {

solve Cutting_Opt;

let {i in FINALTYPES} price[i] := Fill_Orders[i].dual;

solve Pattern_Gen;

if Reduced_Cost > 0.00001 then {

let nPAT := nPAT + 1;

let {i in FINALTYPES} nbr[i,nPAT] := Use[i];

}

else break;

};

display nbr;

display Cut;



AMPL Output:

Gurobi 5.6.3: optimal solution; objective 0.25

Gurobi 5.6.3: optimal solution; objective 24.35

presolve, constraint Max_Cuts[5]:

no variables, but lower bound = -Infinity, upper = -2

nbr :=

1 1 8

1 2 0

1 3 0

1 4 0

1 5 0

2 1 0

2 2 8

2 3 0

2 4 0

2 5 0

3 1 0

3 2 0

3 3 8

3 4 0

3 5 0

4 1 0

4 2 0

4 3 0

4 4 8

4 5 10

;

Cut [*] :=

1 11.25

2 6.375

3 5.625

4 0

5 1.1

;


